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Preface 

I will be happy with this preface if three important points come through clearly: 

1. The beauty and variety of linear algebra, and its extreme usefulness 

2. The goals of this book, and the new features in this Fourth Edition 

3. The steady support from our linear algebra websites and the video lectures 

May I begin with notes about two websites that are constantly used, and the new one. 

ocw.mit.edu Messages come from thousands of students and faculty about linear algebra 
on this OpenCourseWare site. The 18.06 course includes video lectures of a complete 
semester of classes. Those lectures offer an independent review of the whole subject based 
on this textbook-the professor's time stays free and the student's time can be 3 a.m. 
(The reader doesn't have to be in a class at all.) A million viewers around the world have 
seen these videos (amazing). I hope you find them helpful. 

web.mit.edu/18.06 This site has homeworks and exams (with solutions) for the current 
course as it is taught, and as far back as 1996. There are also review questions, Java demos, 
Teaching Codes, and short essays (and the video lectures). My goal is to make this book 
as useful as possible, with all the course material we can provide. 

math.mit.edu/linearalgebra The newest website is devoted specifically to this Fourth Edi
tion. It will be a permanent record of ideas and codes and good problems and solutions. 
Sevetal sections of the book are directly available online, plus notes on teaching linear 
algebra. The content is growing quickly and contributions are welcome from everyone. 

The Fourth Edition 

Thousands of readers know earlier editions of Introduction to Linear Algebra. The new 
cover shows the Four Fundamental SUbspaces-the row space and nullspace are on 
the left side, the column space and the nullspace of AT are on the right. It is not usual 
to put the central ideas of the subject on display like this! You will meet those four spaces 
in Chapter 3, and you will understand why that picture is so central to linear algebra. 

Those were named the Four Fundamental Subspaces in my first book, and they start 
from a matrix A. Each row of A is a vector in n-dimensional space. When the matrix 
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has m rows, each column is a vector in m-dimensional space. The crucial operation in 
linear algebra is taking linear combinations of vectors. (That idea starts on page 1 of the 
book and never stops.) When we take all linear combinations of the column vectors, we get 
the column space. If this space includes the vector b, we can solve the equation Ax = b. 

I have to stop here or you won't read the book. May I call special attention to the new 
Section 1.3 in which these ideas come early-with two specific examples. You are not 
expected to catch every detail of vector spaces in one day! But you will see the first matrices 
in the book, and a picture of their column spaces, and even an inverse matrix. You will be 
learning the language of linear algebra in the best and most efficient way: by using it. 

Every section of the basic course now ends with Challenge Problems. They follow a 
large collection of review problems, which ask you to use the ideas in that section--the 
dimension of the column space, a basis for that space, the rank and inverse and determinant 
and eigenvalues of A. Many problems look for computations by hand on a small matrix, 
and they have been highly praised. The new Challenge Problems go a step further, and 
sometimes they go deeper. Let me give four examples: 

Section 2.1: Which row exchanges of a Sudoku matrix produce another Sudoku matrix? 

Section 2.4: From the shapes of A, B, C, is it faster to compute AB times C or A times BC? 

Background: The great fact about mUltiplying matrices is that AB times C gives the same 
answer as A times B C. This simple statement is the reason behind the rule for matrix 
multiplication. If AB is square and C is a vector, it's faster to do BC first. Then multiply 
by A to produce ABC. The question asks about other shapes of A, B, and C. 

Section 3.4: If Ax = band Cx = b have the same solutions for every b, is A = C? 

Section 4.1: What conditions on the four vectors r, n, c, .e allow them to be bases for 
the row space, the nullspace, the column space, and the left nullspace of a 2 by 2 matrix? 

The Start of the Course 

The equation Ax = b uses the language of linear combinations right away. The vector 
Ax is a combination of the columns of A. The equation is asking for a combination that 
produces b. The solution vector x comes at three levels and all are important: 

1. Direct solution to find x by forward elimination and back substitution. 

2. Matrix solution using the inverse of A: x = A-1b (if A has an inverse). 

3. Vector space solution x = y + z as shown on the cover of the book: 

Particular solution (to Ay = b) plus nullspace solution (to Az = 0) 

Direct elimination is the most frequently used algorithm in scientific computing, and the 
idea is not hard. Simplify the matrix A so it becomes triangular-then all solutions come 
quickly. I don't spend forever on practicing elimination, it will get learned. 

The speed of every new supercomputer is tested on Ax = b: it's pure linear algebra. 
IBM and Los Alamos announced a new world record of 1015 operations per second in 2008. 
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That petajlop speed was reached by solving many equations in parallel. High performance 
computers avoid operating on single numbers, they feed on whole submatrices. 

The processors in the Roadrunner are based on the Cell Engine in PlayStation 3. 
What can I say, video games are now the largest market for the fastest computations. 

Even a supercomputer doesn't want the inverse matrix: too slow. Inverses give the sim
plest formula x = A-I b but not the top speed. And everyone must know that determinants 
are even slower-there is no way a linear algebra course should begin with formulas for 
the determinant of an n by n matrix. Those formulas have a place, but not first place. 

Structure of the Textbook 

Already in this preface, you can see the style of the book and its goal. That goal is serious, 
to explain this beautiful and useful part of mathematics. You will see how the applications 
of linear algebra reinforce the key ideas. I hope every teacher willieam something new; 
familiar ideas can be seen in a new way. The book moves gradually and steadily from 
numbers to vectors to subspaces--each level comes naturally and everyone can get it. 

Here are ten points about the organization of this book: 

1. Chapter 1 starts with vectors and dot products. If the class has met them before, 
focus quickly on linear combinations. The new Section 1.3 provides three indepen
dent vectors whose combinations fill all of 3-dimensional space, and three depen
dent vectors in a plane. Those two examples are the beginning of linear algebra. 

2. Chapter 2 shows the row picture and the column picture of Ax = b. The heart of 
linear algebra is in that connection between the rows of A and the columns: the 
same numbers but very different pictures. Then begins the algebra of matrices: an 
elimination matrix E multiplies A to produce a zero. The goal here is to capture 
the whole process-start with A and end with an upper triangular U. 

Elimination is seen in the beautiful form A = L U. The lower triangular L holds 
all the forward elimination steps, and U is the matrix for back substitution. 

3. Chapter 3 is linear algebra at the best level: subspaces. The column space contains 
aIlline~r combinations of the columns. The crucial question is: How many of those 
columns are needed? The answer tells us the dimension of the column space, and 
the key information about A. We reach the Fundamental Theorem of Linear Algebra. 

4. Chapter 4 has m equations and only n unknowns. It is almost sure that Ax = b has 
no solution. We cannot throw out equations that are close but not perfectly exact. 
When we solve by least squares, the key will be the matrix AT A. This wonderful 
matrix AT A appears everywhere in applied mathematics, when A is rectangular. 

5. Determinants in Chapter 5 give formulas for all that has come before-inverses, 
pivots, volumes in n-dimensional space, and more. We don't need those formulas to 
compute! They slow us down. But det A = 0 tells when a matrix is singular, and 
that test is the key to eigenvalues. 
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6. Section 6.1 introduces eigenvalues for 2 by 2 matrices. Many courses want to see 
eigenvalues early. It is completely reasonable to come here directly from Chapter 3, 
because the determinant is easy for a 2 by 2 matrix. The key equation is Ax = AX. 

Eigenvalues and eigenvectors are an astonishing way to understand a square matrix. 
They are not for Ax = b, they are for dynamic equations like du/ dt = Au. 
The idea is always the same: follow the eigenvectors. In those special directions, 
A acts like a single number (the eigenvalue A) and the problem is one-dimensional. 

Chapter 6 is full of applications. One highlight is diagonalizing a symmetric matrix. 
Another highlight-not so well known but more important every day-is the 
diagonalization of any matrix. This needs two sets of eigenvectors, not one, and 
they come (of course!) from AT A and AAT. This Singular Value Decomposition 
often marks the end of the basic course and the start of a second course. 

7. Chapter 7 explains the linear transformation approach-it is linear algebra without 
coordinates, the ideas without computations. Chapter 9 is the opposite-all about 
how Ax = b and Ax = AX are really solved. Then Chapter 10 moves from real 
numbers and vectors to complex vectors and matrices. The Fourier matrix F is the 
most important complex matrix we will ever see. And the Fast Fourier Transform 
(multiplying quickly by F and F-1) is a revolutionary algorithm. 

8. Chapter 8 is full of applications, more than any single course could need: 

8.1 Matrices in Engineering-differential equations replaced by matrix equations 

8.2 Graphs and Networks-leading to the edge-node matrix for Kirchhoff's Laws 

8.3 Markov Matrices-as in Google's PageRank algorithm 

8.4 Linear Programming-a new requirement x > ° and minimization of the cost 

8.5 Fourier Series-linear algebra for functions and digital signal processing 

8.6 Matrices in Statistics and Probability-Ax = b is weighted by average errors 

8.7 Computer Graphics-matrices move and rotate and compress images. 

9. Every section in the basic course ends with a Review of the Key Ideas. 

10. How should computing be included in a linear algebra course? It can open a new 
understanding of matrices-every class will find a balance. I chose the language of 
MATLAB as a direct way to describe linear algebra: eig(ones(4)) will produce the 
eigenvalues 4, 0, 0, ° of the 4 by 4 all-ones matrix. Go to netlib.orgfor codes. 

You can freely choose a different system. More and more software is open source. 

The new website math.mit.edullinearalgebra provides further ideas about teaching and 
learning. Please contribute! Good problems are welcome by email: gs@math.mit.edu. 
Send new applications too, linear algebra is an incredibly useful subject. 
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The Variety of Linear Algebra 

Calculus is mostly about one special operation (the derivative) and its inverse (the integral). 
Of course I admit that calculus could be important .... But so many applications of math
ematics are discrete rather than continuous, digital rather than analog. The century of data 
has begun! You will find a light-hearted essay called "Too Much Calculus" on my website. 
The truth is that vectors and matrices have become the language to know. 

Part of that language is the wonderful variety of matrices. Let me give three examples: 

Symmetric matrix Orthogonal matrix Triangular matrix 

2 -1 0 0 1 1 1 1 1 1 1 1 
-1 2 -1 0 1 1 -1 1 -1 0 1 1 1 

0 -1 2 -1 2 1 1 -1 -1 0 0 1 1 
0 0 -1 2 1 -1 -1 1 0 0 0 1 

A key goal is learning to "read" a matrix. You need to see the meaning in the numbers. 
This is really the essence of mathematics-patterns and their meaning. 

May I end with this thought for professors. You might feel that the direction is right, 
and wonder if your students are ready. Just give them a chance! Literally thousands of 
students have written to me, frequently with suggestions and surprisingly often with thanks. 
They know this course has a purpose, because the professor and the book are on their side. 
Linear algebra is a fantastic subject, enjoy it. 

Help With This Book 

I can't even name all the friends who helped me, beyond thanking Brett Coonley at MIT 
and Valutone in Mumbai and SIAM in Philadelphia for years of constant and dedicated 
support. The greatest encouragement of all is the feeling that you are doing something 
worthwhile with your life. Hundreds of generous readers have sent ideas and examples and 
corrections (and favorite matrices!) that appear in this book. Thank you all. 

Background of the Author 

This is my eighth textbook on linear algebra, and I have not written about myself before. 
I hesitate to do it now. It is the mathematics that is important, and the reader. The next 
paragraphs add something personal as a way to say that textbooks are written by people. 

I was born in Chicago and went to school in Washington and Cincinnati and St. Louis. 
My college was MIT (and my linear algebra course was extremely abstract). After that 
came Oxford and UCLA, then back to MIT for a very long time. I don't know how many 
thousands of students have taken 18.06 (more than a million when you include the videos 
on ocw.mit.edu). The time for a fresh approach was right, because this fantastic subject 
was only revealed to math majors-we needed to open linear algebra to the world. 

Those years of teaching led to the Haimo Prize from the Mathematical Association of 
America. For encouraging education worldwide, the International Congress of Industrial 
and Applied Mathematics awarded me the first Su Buchin Prize. I am extremely grateful, 
more than I could possibly say. What I hope most is that you will like linear algebra. 





Chapter 1 

Introduction to Vectors 

The heart of linear algebra is in two operations-both with vectors. We add vectors to get 
v + w. We multiply them by numbers c and d to get cv and d w. Combining those two 
operations (adding cv to d w) gives the linear combination cv + d w. 

Linear combination. cv + dw = c [ ~ ] + d [ ; ] = [ ~!;~ ] 
Example v + w = [ ~ ] + [ ; ] = [ ! ] is the combination with c = d = 1 

Linear combinations are all-important in this subject! Sometimes we want one partic
ular combination, the specific choice c = 2 and d = 1 that produces cv + dw = (4,5). 
Other times we want all the combinations of v and w (coming from all c and d). 

The vectors cv lie along a line. When w is not on that line, the combinations cv + d w 
fill the whole two-dimensional plane. (I have to say "two-dimensional" because linear 
algebra allows higher-dimensional planes.) Starting from four vectors u, v, w,z in four
dimensional space, their combinations cu + dv + ew + Jz are likely to fill the space
but not always. The vectors"and their combinations could even lie on one line. 

Chapter 1 explains these central ideas, on which everything builds. We start with two
dimensional vectors and three-dimensional vectors, which are reasonable to draw. Then 
we move into higher dimensions. The really impressive feature of linear algebra is how 
smoothly it takes that step into n-dimensional space. Your mental picture stays completely 
correct, even if drawing a ten-dimensional vector is impossible. 

This is where the book is going (into n-dimensional space). The first steps are the 
operations in Sections 1.1 and 1.2. Then Section 1.3 outlines three fundamental ideas. 

1.1 Vector addition v + wand linear combinations cv + d w. 

1.2 The dot product v • w of two vectors and the length II v II = ~. 
1.3 Matrices A, linear equations Ax = b, solutions x = A -I b. 

1 



2 Chapter 1. Introduction to Vectors 

1.1 Vectors and Linear Combinations 

"You can't add apples and oranges." In a strange way, this is the reason for vectors. 
We have two separate numbers VI and V2. That pair produces a two-dimensional vector v: 

Column vector 
VI = first component 
V2 = second component 

We write v as a column, not as a row. The main point so far is to have a single letter v 
(in boldface italic) for this pair of numbers VI and V2 (in lightface italic). 

Even if we don't add V 1 to V2, we do add vectors. The first components of v and w stay 
separate from the second components: 

VECTOR 
ADDITION v = [ ~~] and w = [ :~ ] add to v + w = [ VI ++ WI ]. 

V2 W2 

You see the reason. We want to add apples to apples. Subtraction of vectors follows the 
same idea: The components of v - ware VI - WI and V2 - W2. 

The other basic operation is scalar multiplication. Vectors can be multiplied by 2 or by 
-1 or by any number c. There are two ways to double a vector. One way is to add v + v. 
The other way (the usual way) is to multiply each component by 2: 

SCALAR 
MULTIPLICATION 

and - v = [ -VI ]. 
-V2 

The components of cv are CVI and CV2. The number c is called a "scalar". 
, 

Notice that the sum of -v and v is the zero vector. This is 0, which is not the same as 
the number zero! The vector 0 has components 0 and O. Forgive me for hammering away 
at the difference between a vector and its components. Linear algebra is built on these 
operations v + wand cv-adding vectors and multiplying by scalars. 

The order of addition makes no difference: v + w equals w + v. Check that by algebra: 
The first component is VI + WI which equals WI + VI. Check also by an example: 
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Linear Combinations 

Combining addition with scalar multiplication, we now form "linear combinations" of v 
and w. Multiply v by c and multiply w by d; then add cv + d w. 

DEFINITION Thesumo!cv anddw isa linear combinationolvll11,dlih 

Four special linear combinations are: sum, difference, zero, and a scalar multiple cv: 

Iv + lw 
Iv-lw 
Ov+Ow 
cv+Ow 

sum of vectors in Figure 1.1 a 
difference of vectors in Figure 1.1 b 
zero vector 
vector cv in the direction of v 

The zero vector is always a possible combination (its coefficients are zero). Every time we 
see a "space" of vectors, that zero vector will be included. This big view, taking all the 
combinations of v and w, is linear algebra at work. 

The figures show how you can visualize vectors. For algebra, we just need the com
ponents (like 4 and 2). That vector v is represented by an arrow. The arrow goes VI = 4 
units to the right and V2 = 2 units up. It ends at the point whose x, y coordinates are 4,2. 
This point is another representation of the vector-so we have three ways to describe v: 

RepresentvectoJ." v Two numbers Arrow from (0,0) . Point in the plane 

We add using the numbers. We visualize v + w using arrows: 
Vector addition (head to tail) At the end of v, place the start of w. 

Figure l.1: Vector addition v + w = (3, 4) produces the diagonal of a parallelogram. 
The linear combination on the right is v - w = (5, 0). 

We travel along v and then along w. Or we take the diagonal shortcut along v + w. We 
could also go along wand then v. In other words, w + v gives the same answer as v + w. 
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These are different ways along the parallelogram (in this example it is a rectangle). The 
sum is the diagonal vector v + w. 

The zero vector 0 = (0,0) is too short to draw a decent arrow, but you know that 
v + 0 = v. For 2v we double the length of the arrow. We reverse w to get -w. This 
reversing gives the subtraction on the right side of Figure 1.1. 

Vectors in Three Dimensions 

A vector with two components corresponds to a point in the x y plane. The components of v 
are the coordinates of the point: x = v land y = V2. The arrow ends at this point (v 1 , V2), 

when it starts from (0,0). Now we allow vectors to have three components (Vl' V2, V3). 

The xy plane is replaced by three-dimensional space. Here are typical vectors (still 
column vectors but with three components): 

v= UJ and w= m and v+w= m . 
The vector v corresponds to an arrow in 3-space. Usually the arrow starts at the "origin", 
where the xyz axes meet and the coordinates are (0,0,0). The arrow ends at the point 
with coordinates Vl, V2, V3. There is a perfect match between the column vector and the 
arrow from the origin and the point where the arrow ends. 

z 

2 (3,2) -UJ 
y 

y 

x 

x UJ 
", 3 

Figure 1.2: Vectors [~ ] and [~J correspond to points (x, y) and (x, y, z) . 

..... .... [ .....•.. ··.· .......•. 1., .. ' .... ·.· .. ] .. · .. ·, 
. ".,' ,- - .. ' 

v,=. t 
. ,:....1 
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The reason for the row form (in parentheses) is to save space. But v = (1,1, -1) is 
not a row vector! It is in actuality a column vector, just temporarily lying down. The row 
vector [1 1 -1] is absolutely different, even though it has the same three components. 
That row vector is the "transpose" of the column v. 

In three dimensions, v + w is still found a component at a time. The sum has 
components VI + WI and V2 + W2 and V3 + W3. You see how to add vectors in 4 or 5 
or n dimensions. When w starts at the end of v, the third side is v + w. The other way 
around the parallelogram is w + v. Question: Do the four sides all lie in the same plane? 
Yes. And the sum v + w - v - w goes completely around to produce the vector. 

A typical linear combination of three vectors in three dimensions is u + 4v - 2 w: 

Linear combination 
Multiply by 1,4, -2 
Then add 

The Important Questions 

For one vector u, the only linear combinations are the multiples cu. For two vectors, 
the combinations are cu + dv. For three vectors, the combinations are cu + dv + ew. 
Will you take the big step from one combination to all combinations? Every c and d and e 
are allowed. Suppose the vectors u, v, ware in three-dimensional space: 

1. What is the picture of all combinations cu? 

2. What is the picture of all combinations c u + d v? 

3. What is the picture of all combinations cu + dv + ew? 

The answers depend on the particular vectors u, v, and w. If they were zero vectors (a very 
extreme case), then every combination would be zero. If they are typical nonzero vectors 
(components chosen at random), here are the three answers. This is the key to our subject: 

1. The combinations cu fill a line. 

2. The combinations cu +dv fill a plane. 

3. The combinations cu + dv + ew fill three-dimensional space. 

The zero vector (0,0,0) is on the line because c can be zero. It is on the plane because c 
and d can be zero. The line of vectors cu is infinitely long (forward and backward). It is the 
plane of all cu + dv (combining two vectors in three-dimensional space) that I especially 
ask you to think about. 

Adding all cu on one line to all d von the other line fills in the plane in Figure 1.3. 

When we include a third vector w, the multiples ew give a third line. Suppose that third 
line is not in the plane of u and v. Then combining all ew with all cu + dv fills up the 
whole three-dimensional space. 
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Line containing all c u 

(a) 

Chapter 1. Introduction to Vectors 

Plane from 
alIcu+dv 

Figure 1.3: (a) Line through u. (b) The plane containing the lines through u and v. 

This is the typical situation! Line, then plane, then space. But other possibilities exist. 
When w happens to be cu + d v, the third vector is in the plane of the first two. The 
combinations of u, v, w will not go outside that uv plane. We do not get the full three
dimensional space. Please think about the special cases in Problem 1. 

• REVIEW OF THE KEY IDEAS • 

1. A vector v in two-dimensional space has two components VI and V2. 

2. v + w = (VI + WI, V2 + W2) and cv = (CVl, CV2) are found a component at a time. 

3. A linear combination of three vectors u and v and w is c u + d v + ew. 

4. Take all linear combinations of u, or u and v, or u, v, w. In three dimensions, 
those combinations typically fill a line, then a plane, and the whole space R3. 

• WORKED EXAMPLES • 

1.1 A The linear combinations of v = (1, 1,0) and w = (0, 1, I) fill a plane. Describe 
that plane. Find a vector that is not a combination of v and w. 

Solution The combinations cv + d w fill a plane in R 3 • The vectors in that plane allow 
any c and d. The plane of Figure 1.3 fills in between the "u-line" and the "v-line". 

Combinations cv + dw = c U ] + d [ n = [ c ~ d ] fill a plane. 

Four particular vectors in that plane are (0,0,0) and (2,3, 1) and (5,7,2) and 
(Jr, 2Jl', Jr). The second component C + d is always the sum of the first and third com
ponents. The vector (1,2,3) is not in the plane, because 2 f:. 1 + 3. 
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Another description of this plane through (0,0,0) is to know that n (I, -I, 1) is 
perpendicular to the plane. Section 1.2 will confirm that 90° angle by testing dot products: 
v . n = 0 and w . n = O. 

1.1 B For v = (1,0) and w = (0,1), describe all points cv with (1) whole numbers c 
(2) nonnegative c > O. Then add all vectors d wand describe all cv + d w. 

Solution 

(1) The vectors cv = (c,O) with whole numbers c are equally spaced points along the 
x axis (the direction of v). They include (-2,0), (-1,0), (0,0), (1,0), (2,0). 

(2) The vectors cv with c > 0 fill a half-line. It is the positive x axis. This half-line 
starts at (0,0) where c = O. It includes (rr,O) but not (-rr, 0). 

(1') Adding all vectors d w = (0, d) puts a vertical line through those points cv. We 
have infinitely many parallel lines from (whole number c, any number d). 

(2') Adding all vectors d w puts a vertical line through every cv on the half-line. Now 
we have a half-plane. It is the right half of the xy plane (any x > 0, any height y). 

1.1 C Find two equations for the unknowns c and d so that the linear combination 
cv + dw equals the vector b: 

Solution In applying mathematics, many problems have two parts: 

1 Modeling part Express the problem by a set of equations. 

2 Computational part Solve those equations by a fast and accurate algorithm. 

Here we are only asked for the first part (the equations). Chapter 2 is devoted to the second 
part (the algorithm). Our example fits into a fundamental model for linear algebra: 

Find CI, ... ,Cn sothat CIVI +",+cnvn =b. , 

For n = 2 we could find a formula for the c's. The "elimination method" in Chapter 2 
succeeds far beyond n = 100. For n greater than I million, see Chapter 9. Here n = 2: 

Vector equation 

The required equations for c and d just come from the two components separately: 

Two scalar equations 
2c - d = I 

-c + 2d = 0 

2 I 
You could think of those as two lines that cross at the solution c = 3' d = 3' 
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Problem Set 1.1 

Problems 1-9 are about addition of vectors and linear combinations. 

1 Describe geometrically (line, plane, or all of R 3) all linear combinations of 

2 Draw v = [ ~ ] and W = [ -~ ] and v+W and v-w in a single xy plane. 

3 If v + w = [ ~ ] and v - w = [ ; ], compute and draw v and w. 

4 From v = [ i ] and W = [ ; ], find the components of 3v + wand cv + d w. 

5 Compute u + v + wand 2u + 2v + w. How do you know u, v, w lie in a plane? 

In a plane 

6 Every combination of v = (1, -2, 1) and w = (0, 1, -1) has components that add 
to . Find c and d so that cv + dw = (3,3, -6). 

7 In the x y plane mark all nine of these linear combinations: 

c [i] + d [~] with c = 0, 1,2 and d = 0, 1,2. 

8 The parallelogram in Figure 1.1 has diagonal v + w. What is its other diagonal? 
What is the sum of the two diagonals? Draw that vector sum. 

, 
9 If three comers of a parallelogram are (1, 1), (4,2), and (1,3), what are all three of 

the possible fourth comers? Draw two of them. 

Problems 10-14 are about special vectors on cubes and clocks in Figure 1.4. 

10 Which point of the cube is i + j? Which point is the vector sum of i = (1, 0, 0) 
and j = (0,1,0) and k = (0,0, I)? Describe all points (x, y, z) in the cube. 

11 Four comers of the cube are (0,0,0), (1,0,0), (0, 1,0), (0,0,1). What are the other 
four comers? Find the coordinates of the center point of the cube. The center points 
of the six faces are __ 

12 How many comers does a cube have in 4 dimensions? How many 3D faces? 
How many edges? A typical comer is (0,0, 1,0). A typical edge goes to (0, 1,0,0). 
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k=(O,O,I) j+k 
- - - .. 

I I 

~--+-Ij = (0, 1,0) 

I I 

- .. 
i = (1,0,0) 

Notice the illusion 
Is (0,0,0) a top or 
a bottom comer? 

Figure 1.4: Unit cube from i,j, k and twelve clock vectors. 

9 

13 (a) What is the sum V of the twelve vectors that go from the center of a clock to 
the hours 1 :00,2:00, ... , 12:00? 

(b) If the 2:00 vector is removed, why do the 11 remaining vectors add to 8:00? 

(c) What are the components of that 2:00 vector v = (cos e, sin 8)? 

14 Suppose the twelve vectors start from 6:00 at the bottom instead of (0,0) at the 
center. The vector to 12:00 is doubled to (0,2). Add the new twelve vectors. 

Problems 15-19 go further with linear combinations of v and w (Figure 1.5a). 

15 Figure 1.5a shows ~v + ~w. Mark the points *v + ~w and ~v + ~w and v + w. 

16 Mark the point -v + 2w and any other combination cv + dw with c + d = 1. 
Draw the line of all combinations that have e + d = 1. 

17 Locate ~v + ~w and ~v + ~w. The combinations cv + ew fill out what line? 

18 Restricted by 0 < C < 1 and 0 < d < 1, shade in all combinations cv + d w. 

19 Restricted only by c > 0 and d > 0 draw the "cone" of all combinations cv + d w. 

w w u 

v v 

(a) (b) 

Figure 1.5: Problems 15-19 in a plane Problems 20-25 in 3-dimensional space 
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Problems 20-25 deal with u, v, w in three-dimensional space (see Figure 1.5b). 

20 Locate iu + ~v + ~w and ~u + ~w in Figure 1.5b. Challenge problem: Under 
what restrictions on e, d, e, will the combinations eu + dv + ew fill in the dashed 
triangle? To stay in the triangle, one requirement is e > 0, d > 0, e > 0. 

21 The three sides of the dashed triangle are v - u and w - v and u - w. Their sum is 
__ . Draw the head-to-tail addition around a plane triangle of (3, I) plus (-1, 1) 
plus (-2, -2). 

22 Shade in the pyramid of combinations eu + dv + ew with e > 0, d > 0, e > ° and 
e + d + e < 1. Mark the vector ~ (u + v + w) as inside or outside this pyramid. 

23 If you look at all combinations of those u, v, and w, is there any vector that can't be 
produced from eu + dv + ew? Different answer if u, v, ware all in __ 

24 Which vectors are combinations of u and v, and also combinations of v and w? 

25 Draw vectors u, v, w so that their combinations eu + dv + ew fill only a line. 
Find vectors u, v, w so that their combinations eu + dv + ew fill only a plane. 

26 What combination e [~] + d [i] produces [I:]? Express this question as two 

equations for the coefficients e and d in the linear combination. 

27 Review Question. In xyz space, where is the plane of all linear combinations of 
i = (1,0,0) and i + j = (1, 1,0)? 

Challenge Problems 

28 Find vectors v and w so that v + w = (4,5,6) and v - w = (2,5,8). This is a 
question with unknown numbers, and an equal number of equations to find 
those numbers. 

29 Find two different combinations of the three vectors u = (1,3) and v = (2, 7) and 
w = (1,5) that produce b = (0,1). Slightly delicate question: If I take any three 
vectors u, v, w in the plane, will there always be two different combinations that 
produce b = (0, I)? 

30 The linear combinations of v = (a, b) and w = (e, d) fill the plane unless __ 
Find four vectors u, v, w, z with four components each so that their combinations 
eu + dv + ew + Jz produce all vectors (b I , b2 , b3 , b4 ) in four-dimensional space. 

31 Write down three equations for e, d, e so that eu + d v + ew = b. Can you somehow 
find e, d, and e? 
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1.2 Lengths and Dot Products 

The first section backed off from multiplying vectors. Now we go forward to define the 
"dot product" of v and w. This multiplication involves the separate products VI WI and 
V2W2, but it doesn't stop there. Those two numbers are added to produce the single number 
V· w. This is the geometry section (lengths and angles). 

DEFINll1QN 'I'h.ydotprod~lct ()f inner ]1Toduct of 1) 

is the number.'V·· til: 

Example 1 The vectors v = (4,2) and w = (-1,2) have a zero dot product: 

Dot product is zero 
Perpendicular vectors [ i] . [-;] = -4 + 4 = O. 

(1) 

In mathematics, zero is always a special number. For dot products, it means that these 
two vectors are perpendicular. The angle between them is 90°. When we drew them 
in Figure 1.1, we saw a rectangle (not just any parallelogram). The clearest example of 
perpendicular vectors is i = (1,0) along the x axis and j = (0, 1) up the y axis. Again 
the dot product is i . j = 0 + 0 = O. Those vectors i and j form a right angle. 

The dot product of v = (1,2) and w = (3,1) is 5. Soon v . w will reveal the angle 
between v and w (not 90°). Please check that w . v is also 5. 

The dot product w . v equals v . w. The order of v and w makes no difference. 

Example 2 Put a weight of 4 at the point x = -1 (left of zero) and a weight of 2 at the 
point x = 2 (right of zero). The x axis will balance on the center point (like a see-saw). 
The weights balance because the dot product is (4)(-1) + (2)(2) = O. 

This example is typical of engineering and science. The vector of weights is (WI, W2) = 
(4,2). The vector of distances from the center is (VI, V2) = (-1,2). The weights times the 
distances, WI VI and W2V2, give the "moments". The equation for the see-saw to balance is 
WIVI + W2V2 = O. 

Example 3 Dot products enter in economics and business. We have three goods to buy 
and sell. Their prices are (PI, P2, P3) for each unit-this is the "price vector" p. The 
quantities we buy or sell are (ql, q2, q3)-positive when we sell, negative when we buy. 
Selling qi units at the price PI brings in qi Pl. The total income (quantities q times prices 
p) is the dot product q . p in three dimensions: 

A zero dot product means that "the books balance". Total sales equal total purchases if 
q • P = O. Then p is perpendicular to q (in three-dimensional space). A supermarket with 
thousands of goods goes quickly into high dimensions. 
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Small note: Spreadsheets have become essential in management. They compute linear 
combinations and dot products. What you see on the screen is a matrix. 

Main point To compute v . w, multiply each Vi times Wi. Then add 1: Vi Wi. 

Lengths and Unit Vectors 

An important case is the dot product of a vector with itself. In this case v equals w. 
When the vector is v = (1,2,3), the dot product with itself is v· v = Ilvf = 14: 

Dot product v . v 
Length squared IIvf = m . m = 1 + 4+ 9 = 14 

Instead of a 900 angle between vectors we have 00
• The answer is not zero because v is not 

perpendicular to itself. The dot product v • v gives the length of v squared. 

length = Ilvll =~. 

In two dimensions the length is J vi + vi. In three dimensions it is J vi + v~ + v~. 
By the calculation above, the length of v = (1,2,3) is Ilvll = .JI4. 

Here II v II = ~ is just the ordinary length of the arrow that represents the vector. 
In two dimensions, the arrow is in a plane. If the components are 1 and 2, the arrow is 
the third side of a right triangle (Figure 1.6). The Pythagoras formula a2 + b2 = c2 , 

which connects the three sides, is 12 + 22 = II V 112. 
For the length of v = (1,2, 3), we used the right triangle formula twice. The vector 

(1, 2, 0) in the base has length ...[5. This base vector is perpendicular to (0,0, 3) that goes 
straight up. So the diagonal of the box has length II v II = J 5 + 9 = .JI4. 

The length of a four-dimensional vector would be J vi + v~ + v~ + v~. Thus the 
vector (1, 1, 1, 1) has length J 12 + 12 + 12 + 12 = 2. This is the diagonal through a unit 
cube in four-dimensional space. The diagonal in n dimensions has length .Jfi. 

The word "unit" is always indicating that some measurement equals "one". The unit 
price is the price for one item. A unit cube has sides of length one. A unit circle is a circle 
with radius one. Now we define the idea of a "unit vector". 

A I ..c d· .. ( 1 1 1 1) Th . 1 1 1 1 1 n examp e m lour ImenslOns IS U = '2' '2' '2' '2. en U • U IS 4" + 4" + 4" + 4" = . 
We divided v = (1,1,1,1) by its length Ilvll = 2 to get this unit vector. 
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(0,0,3) - - - - - ., 
/ /1 

I 
/ I 

(0,2) (1,2) 
(- - (1,2,3) has 

v·v - v2 + v2 + v2 
I length .J14 1 2 3 

12 + 22 
I I 

2 5 - I I 

14 - 12 + 22 + 32 
I I 

(1,0) 
(0,2,0) 

: (1,2,0) has 
(1,0,0) length ,J5 

Figure 1.6: The length ~ of two-dimensional and three-dimensional vectors. 

Example 4 The standard unit vectors along the x and y axes are written i and j . In the 
xy plane, the unit vector that makes an angle "theta" with the x axis is (cos e, sin e): 

Unit vectors i = [~] and j = [~] and u = [~~::l 

When e = 0, the horizontal vector u is i. When e = 90° (or ~ radians), the vertical 
vector is j. At any angle, the components cos () and sin () produce u . u = 1 because 
cos2 () + sin2 

() = 1. These vectors reach out to the unit circle in Figure 1.7. Thus cos () 
and sin () are simply the coordinates of that point at angle () on the unit circle. 

Since (2,2,1) has length 3, the vector (~, ~, t) has length 1. Check that u • u -

~ + ~ + ~ = 1. For a unit vector, divide any nonzero v by its length II v II. 

Unit v.e~tor u = v/llv II ···js.a unityectot bltlJ,esamedirectiona~v .... ·. 

j = (0,1) v " (1, 1) j _ [cos ()] u - . () sm 

( 1 1) v 
u = ./2'./2 = IIvll 

-i i = (1,0) 

-j 

Figure 1.7: The coordinate vectors i and j. The unit vector u at angle 45° (left) divides 
v = (1, 1) by its length II v II = ..[2. The unit vector u = (cos e, sin e) is at angle (). 
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The Angle Between Two Vectors 

We stated that perpendicular vectors have v . w = O. The dot product is zero when the 
angle is 90°. To explain this, we have to connect angles to dot products. Then we show 
how v • w finds the angle between any two nonzero vectors v and w . 

. Flightangle~ The dot product is v • w = 0 when v is perpendicular to w. 

Proof When v and ware perpendicular, they form two sides of a right triangle. 
The third side is v - w (the hypotenuse going across in Figure 1.8). The Pythagoras Law 
for the sides of a right triangle is a 2 + b2 = c2 : 

Perpendicular vectors II v 112 + II W 112 = II v - W 112 (2) 

Writing out the formulas for those lengths in two dimensions, this equation is 

Pythagoras (3) 

The right side begins with vi - 2VI WI + wi- Then vi and wi are on both sides of the 
equation and they cancel, leaving -2VIWI. Also v~ and w~ cancel, leaving -2V2W2. 

(In three dimensions there would be -2V3W3.) Now divide by -2: 

Conclusion Right angles produce v • w = O. The dot product is zero when the angle is 
e = 90°. Then cos e = O. The zero vector v = 0 is perpendicular to every vector w 
because 0 • w is always zero. 

Now suppose v . w is not zero. It may be positive, it may be negative. The sign of v . w 
immediately tells whether we are below or above a right angle. The angle is less than 90° 
when v . w is positive. The angle is above 90° when v . w is negative. The right side of 
Figure 1.8 shows a typical vector v = (3,1). The angle with w = (1,3) is less than 90° 
because v . w = 6 is positive. 

v· w = 0 

..... - - -

angle above 90° 
in this half-plane 

~v.w>O 
v 

angle below 90° 
in this half-plane 

Figure 1.8: Perpendicular vectors have v· w = O. Then IIvl1 2 + IIwl12 = Ilv - W1l2. 
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The borderline is where vectors are perpendicular to v. On that dividing line between 
plus and minus, (1, -3) is perpendicular to (3, 1). The dot product is zero. 

The dot product reveals the exact angle e. This is not necessary for linear algebra-you 
could stop here! Once we have matrices, we won't come back to e. But while we are on 
the subject of angles, this is the place for the formula. 

Start with unit vectors u and U. The sign of u • U tells whether e < 90° or e > 90°. 
Because the vectors have length 1, we learn more than that. The dot product u • U is the 
cosine of e. This is true in any number of dimensions. 

Uriitvectorsu aIid U·atangle e have u· U = cos e. Certainly lu .UI·< 1. 

Remember that cos e is never greater than 1. It is never less than -1. The dot product of 
unit vectors is between -1 and 1. 

Figure 1.9 shows this clearly when the vectors are u = (cos e, sin e) and i = (1, 0). 
The dot product is u . i = cos e. That is the cosine of the angle between them. 

After rotation through any angle a, these are still unit vectors. The vector i = (1,0) 
rotates to (cos a, sin a). The vector u rotates to (cos tJ, sin tJ) with tJ = a + e. Their 
dot product is cos a cos tJ + sin a sin tJ. From trigonometry this is the same as cos(tJ - a). 
But tJ - a is the angle e, so the dot product is cos e. 

u = [c~s e] 
sm e 

[ c~s tJ] 
smtJ 

~ i = [~] 
u • l = cos e e=tJ-a 

Figure 1.9: The dot product of unit vectors is the cosine of the angle e. 

Problem 24 proves lu . U I < 1 directly, without mentioning angles. The inequality and 
the cosine formula u • U = cos e are always true for unit vectors. 

What if v and ware not unit vectors? Divide by their lengths to get u = v / II v II and 
U = w / II w II. Then the dot product of those unit vectors u and U gives cos e. 

COSINEFORl\fULA If v<anclware 11,onzerovectdrs then v • w = cos e. 
IIvllllwll 
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Whatever the angle, this dot product of v / II v II with w / II w II never exceeds one. That 
is the "Schwarz inequality" Iv • wi < Ilvllllwll for dot products-or more correctly the 
Cauchy-Schwarz-Buniakowsky inequality. It was found in France and Germany 
and Russia (and maybe elsewhere-it is the most important inequality in mathematics). 

Since I cos () I never exceeds 1, the cosine formula gives two great inequalities: 

'S0HWARZINEQUi\:LI:'l'Y 

TRIANGLKINEQUALITY 

Iv. wi < IIvllllwll 

IIv + wll < IIvll + Ilwll 

Example 5 Find cos () for v = [ i ] and w = [ ; ] and check both inequalities. 

Solution The dot product is v· w = 4. Both v and w have length,J5. The cosine is 4/5. 

v· w 4 4 
cos () = Ilvllllwll - ,J5../5 - "5 

The angle is below 900 because v· w = 4 is positive. By the Schwarz inequality, v· w = 4 
is less than IIvllllwll = 5. Side 3 = Ilv + wll is less than side 1 + side 2, by the triangle 
inequality. For v + w = (3,3) that says .JI8 < ../5 + ../5. Square this to get 18 < 20. 

Example 6 The dot product of v = (a, b) and w = (b, a) is 2ab. Both lengths are 
J a2 + b2 • The Schwarz inequality in this case says that 2ab < a2 + b2• 

This is more famous if we write x = a2 and y = b2 • The "geometric mean" JXY 
is not larger than the "arithmetic mean" = average !(x + y). 

Geometric < Arithmetic 
mean mean 

a2 +b2 

ab<--
- 2 becomes 

r;;;; x + y 
yxy < 2 . 

Example 5 had a = 2 and b = 1. So x = 4 and y = 1. The geometric mean ,.fXY = 2 
is below the arithmetic me~n ~(1 + 4) = 2.5. 

\ 

Notes on Computing 

Write the components of vas v(l), . .. , v(N) and similarly for w. In FORTRAN, the sum 
v + w requires a loop to add components separately. The dot product also uses a loop to 
add the separate v(j)w(j). Here are VPLUSW and VDOTW: 

FORTRAN 
DO 10 J = 1,N 

10 VPLUSW(J) = v(J) + w(J) 
DO i0J = i,N 

10 VDOTW = VDOTW + V(J) * W(J) 

MATLAB and also PYTHON work directly with whole vectors, not their components. 
No loop is needed. When v and w have been defined, v + w is immediately understood. 
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Input v and w as rows-the prime' transposes them to columns. 2v + 3w uses * for 
multiplication by 2 and 3. The result will be printed unless the line ends in a semicolon. 

MATLAB v = [2 3 4]' ; w = [1 1 1]' ; u = 2 * v + 3 * w 

The dot product v • w is usually seen as a row times a column (with no dot): 

hIsteadof . rn· [!j we more.oftenS¢ [U I [!] or v I ow 

The length of v is known to MATLAB as norm (v). We could define it ourselves as 
sqrt (v' * v), using the square root function-also known. The cosine we have to define 
ourselves! The angle (in radians) comes from the arc cosine (acos) function: 

Cosin¢ f9tl11111a 
AnglefotDnJla 

cosine = v' * w/(norm (v) * norm (w)) 
angle = acos (cosine) 

An M-file would create a new function cosine (v, w) for future use. The M-files created 
especially for this book are listed at the end. R and PYTHON are open source software. 

• REVIEW OF THE KEY IDEAS • 

1. The dot product v . w multiplies each component Vi by Wi and adds all Vi Wi • 

2. The length II v II of a vector is the square root of v . v. 

3. u = v / II v II is a unit vector. Its length is 1. 

4. The dot product is v . w = 0 when vectors v and ware perpendicular. 

5. The cosine of f) (the angle between any nonzero v and w) never exceeds 1: 

v··w 
cos f) = IIvllllwll Schwarz inequality Iv. wi < IIvllllwll· 

Problem 21 will produce the triangle inequality II v + w II < II v II + II w II· 

• WORKED EXAMPLES • 

1.2 A For the vectors v = (3,4) and w = (4,3) test the Schwarz inequality on v . w 
and the triangle inequality on II v + w II. Find cos f) for the angle between v and w. 
When will we have equality Iv. wi = IIvllllwll and IIv + wll = IIvll + IIwll? 
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Solution The dot product is v • w = (3)(4) + (4)(3) = 24. The length of v is 
Ilvll = ../9 + 16 = 5 and also Ilwll = 5. The sum v + w = (7,7) has length 7,j2 < 10. 

Iv· wi < IIvllllwll is 24 < 25. Schwarz inequality 

Triangle inequality 

Cosine of angle 

Ilv + wll < Ilvll + Ilwll is 7,j2 < 5 + 5. 

cos e = ~~ Thin angle from v = (3,4) to w = (4,3) 

Suppose one vector is a multiple of the other as in w = cv. Then the angle is 00 or 1800
• 

In this case I cos el = 1 and Iv· wi equals Ilvllllwll. If the angle is 0°, as in w = 2v, then 
II v + w II = II v II + II w II. The triangle is completely fiat. 

1.2 B Find a unit vector u in the direction of v = (3,4). Find a unit vector U that is 
perpendicular to u. How many possibilities for U? 

Solution For a unit vector u, divide v by its length Ilvll = 5. For a perpendicular vector 
V we can choose (-4,3) since the dot product v . V is (3)(-4) + (4)(3) = O. For a unit 
vector U, divide V by its length II V II : 

U· U = 0 

The only other perpendicular unit vector would be - U = (~, - ~). 

1.2 C Find a vector x = (c, d) that has dot products x • r = 1 and x • s = 0 with the 
givenvectorsr = (2,-1) ands = (-1,2). 

How is this question related to Example 1.1 C, which solved cv + dw = h = (I,O)? 

Solution Those two dot products give linear equations for c and d. Then x = (c, d). 

x· r = I 
x·s = 0 

2c - d = 1 
- c +2d = 0 

The same equations as 
in Worked Example 1.1 C 

The second equation makes x perpendicular to s = (-1,2). So I can see the geometry: 
Go in the perpendicular direction (2, 1). When you reach x = ~(2, 1), the dot product 
with r = (2, -I) has the required value x . r = 1. 

Comment on n equationsfor x = (Xl, . .. , xn) in n-dimensional space 
Section 1.1 would start with column vectors v I, ... , v n . The goal is to combine them to 
produce a required vector Xl vI + ... + XnVn = h. This section would start from vectors 
r I, ... , r n. Now the goal is to find x with the required dot products x . r i = bi • 

Soon the v's will be the columns of a matrix A, and the r's will be the rows of A. 
Then the (one and only) problem will be to solve Ax = h. 
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Problem Set 1.2 

1 Calculate the dot products u • v and u • wand u • (v + w) and w • v: 

2 Compute the lengths "u" and "v II and II w II of those vectors. Check the Schwarz 
inequalities lu. vi < lIullllvll and Iv· wi < Ilvllllwll· 

3 Find unit vectors in the directions of v and w in Problem 1, and the cosine of the 
angle e. Choose vectors a, b, c that make 0°, 90°, and 1800 angles with w. 

4 For any unit vectors v and w, find the dot products (actual numbers) of 

(a) v and-v (b) v + wand v - w (c) v - 2w and v + 2w 

5 Find unit vectors Ul and U2 in the directions of v = (3,1) and w = (2,1,2). 
Find unit vectors Uland U 2 that are perpendicular to Ul and U2. 

6 (a) Describe every vector w = (WI, W2) that is perpendicular to v = (2, -1), 

(b) The vectors that are perpendicular to V = (1, 1, 1) lie on a __ 

(c) The vectors that are perpendicular to (1, 1, 1) and (1,2,3) lie on a __ 

7 Find the angle e (from its cosine) between these pairs of vectors: 

(a) v = [~] 

(c) v = [~] 

and 

and 

w = [~] 

W= [l] 
(b) v = UJ and w = HJ 

(d) v = [~] and w = [ ;} 

8 True or false (give a reason if true or a counterexample if false): 

(a) If u is perpendicular (in three dimensions) to v and w, those vectors v and w 
are parallel. " 

(b) If u is perpendicular to v and w, then u is perpendicular to v + 2 w, 

(c) If u and v are perpendicular unit vectors then II u - v" = ,.,fi, 
g The slopes of the arrows from (0,0) to (VI, V2) and (WI, W2) are V2/VI and W2/WI' 

Suppose the product V2W2/VI WI of those slopes is -1. Show that v . w = 0 and 
the vectors are perpendicular. 

10 Draw arrows from (0,0) to the points v = (1,2) and w = (-2,1). Multiply their 
slopes. That answer is a signal that v • w = 0 and the arrows are __ 

11 If v • w is negative, what does this say about the angle between v and w? Draw a 
3-dimensional vector v (an arrow), and show where to find all w's with v . w < O. 
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12 With v = (1, 1) and w = (1, 5) choose a number c so that w - cv is perpendicular 
to v. Then find the formula that gives this number c for any nonzero v and w. 
(Note: cv is the "projection" of w onto v.) 

13 Find two vectors v and w that are perpendicular to (1,0, I) and to each other. 

14 Find nonzero vectors u, v, w that are perpendicular to (1, 1, 1, 1) and to each other. 

15 The geometric mean of x = 2 and y = 8 is .JXY = 4. The arithmetic mean is larger: 
!(x + y) = . This would come in Example 6 from the Schwarz inequality 
for v = (.J2, .JS) and w = (,J8, .J2). Find cos e for this v and w. 

16 How long is the vector v = (I, 1, . . ., 1) in 9 dimensions? Find a unit vector u in 
the same direction as v and a unit vector w that is perpendicular to v. 

17 What are the cosines of the angles a, {J, e between the vector (1,0, -I) and the unit 
vectors i , j , k along the axes? Check the formula cos2 a + cos2 f3 + cos2 e = 1. 

Problems 18-31 lead to the main facts about lengths and angles in triangles. 

18 The parallelogram with sides v = (4,2) and w = (-1,2) is a rectangle. Check the 
Pythagoras formula a 2 + b2 = c2 which is for right triangles only: 

G(!~~~h·;~t.~j~··.·f·(l~~~-;~f .. ~~~~":)··;;~l¢I1iith'6fv!·4itt)~·,,; 

19 (Rules for dot products) These equations are simple but useful: 

(I) V· w = w • v (2) u· (v + w) = u· v + u· w (3) (cv)· w = c(v· w) 

Use (2) with u = v + w to prove Ilv + wl12 = V· V + 2v· w + w· w. 

20 The "Law of Cosines" comes from (v - w)· (v - w) = V· v - 2v· w + w· w: 

Cosine Law 

If e < 90° show that IIvl12 + IIwl12 is larger than IIv - wll2 (the third side). 
" 

21 The triangle inequality says: (length of v + w) < (length of v) + (length of w). 

Problem 19 found Ilv + wll2 = IIvll2 + 2v· w + IIw112. Use the Schwarz inequality 
v • w < II v II II w II to show that II side 311 can not exceed II side III + II side 211 : 

Triangle 
inequality 

22 The Schwarz inequality Iv. wi < IIvll Ilwll by algebra instead of trigonometry: 

(a) Multiply out both sides of (VI WI + V2W2f < (VI + v~)(wI + w~). 
(b) Show that the difference between those two sides equals (VI W2 - V2WI)2. 

This cannot be negative since it is a square-so the inequality is true. 
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v+w 

w 

~~--~~~------------~--.x 

23 The figure shows that cosa = vdllv\l and sina = v2/\1v\l. Similarly cosf3 is 
____ and sin f3 is . The angle 8 is f3 - a. Substitute into the trigonometry 
formula cos f3 cosa + sinf3 sin a for cos(f3 - a) to find cos 8 = V· w IlIvllllwll. 

24 One-line proof of the Schwarz inequality Iu. • U I < I for unit vectors: 

u2 + V 2 u2 + U 2 I + I 
lu, U I < Iud lUll + IU211V2 1 < 1 2 1 + 2 2 2 = 2 = 1. 

Put (u 1, U2) = (.6, .8) and (VI, V2 ) = (.8, .6) in that whole line and find cos e. 

25 Why is I cos 81 never greater than 1 in the first place? 

26 If v = (1,2) draw all vectors w = (x, y) in thexy plane with V· w = x + 2y = 5. 
Which is the shortest w? 

27 (Recommended) If IIvll = 5 and IIwll = 3, what are the smallest and largest values 
of Ilv - w II? What are the smallest and largest values of v . w? 

Challenge Problems 

28 Can three vectors in the xy plane have u . v < 0 and v . w < 0 and u • w < O? 
I don't know how many vectors in x y z space can have all negative dot products. 
(Four of those vectors in the plane would certainly be impossible ... ). 

29 Pick any numbers that 'add to x + y + z = O. Find the angle between your vector 
v = (x,y,z) and the vector w = (z,x,y). Challenge question: Explain why 
V· wl\lvllllwil is always -1. 

30 How could you prove ~xyz < i(x+y+z)(geometricmean < arithmetic mean) ? 

31 Find four perpendicular unit vectors with all components equal to 1 or -1. 
32 Using v = randn(3, I) in MATLAB, create a random unit vector u = vl\lvll. Using 

V = randn(3, 30) create 30 more random unit vectors D.i, What is the average size 
of the dot products I u . D.i I? In cal cui us, the average f: I cos 8 I d 8 1]'( = 2/]'(. 
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1.3 Matrices 

This section is based on two carefully chosen examples. They both start with three vectors. 
I will take their combinations using matrices. The three vectors in the first example are 
u, v, and w: 

First example u=[-i] v=[J] w=U]· 
Their linear combinations in three-dimensional space are cu + dv + ew: 

Combinations (1) 

Now something important: Rewrite that combination using a matrix. The vectors u, v, w 
go into the columns of the matrix A. That matrix "multiplies" a vector: 

Same combination 
is now A times x 

(2) 

The numbers c, d, e are the components of a vector x. The matrix A times the vector x 
is the same as the combination c u + d v + ew of the three columns: 

Ax = [ u v w ] [ n = cu + dv + ew . (3) 

This is more than a d~finition of Ax , because the rewriting brings a crucial change in 
viewpoint. At first, the numbers c, d, e were mUltiplying the vectors. Now the matrix 
is mUltiplying those numbers. The matrix A acts on the vector x. The result Ax is a 
combination b of the columns of A. 

To see that action, I will write Xl, X2, X3 instead of c, d, e. I will write bl , b2 , b3 

for the components of Ax . With new letters we see 

The input is x and the output is b = Ax. This A is a "difference matrix" because b 
contains differences of the input vector x. The top difference is Xl - Xo = Xl - O. 
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Here is an example to show differences of numbers (squares in x, odd numbers in b): 

x = m = squares Ax = [: !] = [i] = b • (5) 

That pattern would continue for a 4 by 4 difference matrix. The next square would be 
X4 = 16. The next difference would be X4 - X3 = 16 - 9 = 7 (this is the next odd 
number). The matrix finds all the differences at once. 

Important Note. You may already have learned about multiplying Ax, a matrix times a 
vector. Probably it was explained differently, using the rows instead of the columns. The 
usual way takes the dot product of each row with x: 

Dot products [1 0 0] [Xl] [ (1,0,0) • (Xl, X2, X3) ] 
with rows Ax = -I 1 0 X2 = (-1,1,0)'(XI,X2,X3) . 

o -1 1 X3 (0,-I,I)'(XI,X2,X3) 

Those dot products are the same Xl and X2 - Xl and X3 - X2 that we wrote in equation (4). 
The new way is to work with Ax a column at a time. Linear combinations are the key to 
linear algebra, and the output Ax is a linear combination of the columns of A. 

With numbers, you can multiply Ax either way (I admit to using rows). With letters, 
columns are the good way. Chapter 2 will repeat these rules of matrix multiplication, and 
explain the underlying ideas. There we will multiply matrices both ways. 

Linear Equations 

One more change in viewpoint is crucial. Up to now, the numbers Xl, X2, X3 were known 
(called c, d, e at first). The right hand side b was not known. We found that vector of 
differences by mUltiplying Ax. Now we think of b as known and we look for x. 

Old question: Compute the linear combination XIU + X2V + X3W to find b. 
New question: Which combination of u, v, w produces a particular vector b? 

This is the inverse problem-to find the input x that gives the desired output b = Ax. You 
have seen this before, as a system of linear equations for Xl, X2, X3. The right hand sides 
of the equations are bl , b2 , b3 • We can solve that system to find Xl, X2, X3: 

Xl = bi 

-Xl +X2 = b2 

-X2 +X3 = b3 

Xl = bi 

Solution X2 = b i + b2 

X3 = b i + b2 + b3 • 

(6) 

Let me admit right away-most linear systems are not so easy to solve. In this example, 
the first equation decided Xl = bl • Then the second equation produced X2 = b i + b2 • 

The equations could be solved in order (top to bottom) because the matrix A was selected 
to be lower triangular. 
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Look at two specific choices 0, 0, 0 and 1, 3, 5 of the right sides b 1 , b2 , b3 : 

The first solution (all zeros) is more important than it looks. In words: If the output is 
b = 0, then the input must be x = O. That statement is true for this matrix A. It is not true 
for all matrices. Our second example will show (for a different matrix C) how we can have 
Cx = 0 when C =f. 0 and x =f. O. 

This matrix A is "invertible". From b we can recover x. 

The Inverse Matrix 

Let me repeat the solution x in equation (6). A sum matrix will appear! 

Ax = b is solved by [~~ ] = [ ~~ + b2 ] = [ ~ 
X3 b i + b2 + b3 1 

(7) 

If the differences of the x's are the b's, the sums of the b's are the x's. That was true for 
the odd numbers b = (1,3,5) and the squares x = (1,4,9). It is true for all vectors. 
The sum matrix S in equation (7) is the inverse of the difference matrix A. 

Example: The differences of x = (1,2,3) are b = (1,1,1). So b = Ax and x = Sb: 

Ax = [ -i J n u ] = U] and Sb = [l r n u ] = U ] 
Equation (7) for the solution vector x = (Xl, X2, X3) tells us two important facts: 

1. For every b there is one solution to Ax = b. 2. A matrix S produces x = S b. 

The next chapters ask about other equations Ax = b. Is there a solution? How is it 
computed? In linear algebra, the notation for the "inverse matrix" is A-I: 

Ax = b is solved by x = A-1b = Sb. 

Note on calculus. Let me connect these special matrices A and S to calculus. The vector 
x changes to a function x(t). The differences Ax become the derivative dx/ dt = bet). In 
the inverse direction, the sum Sb becomes the integral of bet). The Fundamental Theorem 
of Calculus says that integration S is the inverse of differentiation A. 

Ax = b and x = Sb 
dx (t 
dt = b andx(t) = 10 b. (8) 
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The derivative of distance traveled (x) is the velocity (b). The integral of bet) is the 
distance x(t). Instead of adding +C, I measured the distance from x(O) = O. In the 
same way, the differences started at Xo = O. This zero start makes the pattern complete, 
when we write Xl - Xo for the first component of Ax (we just wrote Xl). 

Notice another analogy with calculus. The differences of squares O. 1,4,9 are odd 
numbers 1,3, S. The derivative of X (t) = t 2 is 2t. A perfect analogy would have produced 
the even numbers b = 2,4,6 at times t = 1,2,3. But differences are not the same 
as derivatives, and our matrix A produces not 2t but 2t - 1 (these one-sided "backward 
differences" are centered at t - !): 

X(t) - x(t - 1) = t 2 
- (t - 1)2 = t 2 - (t 2 - 2t + 1) = 2t - 1. (9) 

The Problem Set will follow up to show that "forward differences" produce 2t + 1. 
A better choice (not always seen in calculus courses) is a centered difference that uses 
x(t + 1) - x(t - 1). Divide !!:.x by the distance !!:.t from t - 1 to t + 1, which is 2: 

Centered difference of x(t) = t 2 (t + 1)2 - (t - 1)2 
--"'---2--- = 2t exactly. 

Difference matrices are great. Centered is best. Our second example is not invertible. 

(10) 

Cyclic Differences 

This example keeps the same columns u and v but changes w to a new vector w*: 

Second example 

Now the linear combinations of u, v, w* lead to a cyclic difference matrix C: 

Cyclic 
[ 

1 0 -1] [Xl ] [ Xl - X3 ] . Cx " -1 1 0 X2 = X2 - Xl = h. 
o -1 1 X3 X3 - X2 

(11) 

This matrix C is not triangular. It is not so simple to solve for x when we are given h. 
Actually it is impossible to find the solution to ex = b, because the three equations either 
have infinitely many solutions or else no solution: 

Cx =0 
Infinitely 
many x [

Xl - X3 ] [0] 
X2 - Xl = 0 is solved by all vectors 
X3 - X2 0 

(12) 
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Every constant vector (c, c, c) has zero differences when we go cyclically. This undeter
mined constant c is like the + e that we add to integrals. The cyclic differences have 
Xl - X3 in the first component, instead of starting from Xo = O. 

The other very likely possibility for ex = b is no solution at all: 

Left sides add to 0 
Right sides add to 9 
No solution Xl, X2, X3 

. (13) 

Look at this example geometrically. No combination of u, v, and w* will produce the 
vector b = (1,3,5). The combinations don't fill the whole three-dimensional space. 
The right sides must have b i + b2 + b3 = 0 to allow a solution to ex = b, because 
the left sides Xl - X3, X2 - Xl, and X3 - X2 always add to zero. 

Put that in different words. All linear combinations XIU + X2V + X3W* = b lie on 
the plane given by bi + b2 + b3 = O. This subject is suddenly connecting algebra with 
geometry. Linear combinations can fill all of space, or only a plane. We need a picture to 
show the crucial difference between u, v, w (the first example) and u, v, w*. 

3 w* 3 

U] W= 

2 2 

u=[ -iJ V= [J] U v 

Figure 1.10: Independent vectors u, v, w. Dependent vectors u, v, w* in a plane. 

Independence and Dependence 
, 

Figure 1.10 shows those column vectors, first of the matrix A and then of e. The first two 
columns u and v are the same in both pictures. If we only look at the combinations of those 
two vectors, we will get a two-dimensional plane. The key question is whether the third 
vector is in that plane: 

Independence 
Dependence 

w is not in the plane of u and v. 
w* is in the plane of u and v. 

The important point is that the new vector w* is a linear combination of u and v: 

u +V + w* = 0 W * -- [ -011 ] =-u-v. (14) 
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All three vectors u, v, w* have components adding to zero. Then all their combinations 
will have b1 + b2 + b3 = 0 (as we saw above, by adding the three equations). This is 
the equation for the plane containing all combinations of u and v. By including w* we get 
no new vectors because w * is already on that plane. 

The original w = (0,0,1) is not on the plane: 0 + 0 + 1 #- o. The combinations of 
u, v, w fill the whole three-dimensional space. We know this already, because the solution 
x = S b in equation (6) gave the right combination to produce any b. 

The two matrices A and C, with third columns wand w*, allowed me to mention two 
key words of linear algebra: independence and dependence. The first half of the course will 
develop these ideas much further-I am happy if you see them early in the two examples: 

u, v, ware independent. No combination except Ou + Ov + Ow = 0 gives h = O. 

u, v, w* are dependent. Other combinations (specifically u + v + w*) give h = O. 

You can picture this in three dimensions. The three vectors lie in a plane or they don't. 
Chapter 2 has n vectors in n-dimensional space. Independence or dependence is the key 
point. The vectors go into the columns of an n by n matrix: 

Independent columns: Ax = 0 has one solution. A is an invertible matrix. 

Dependent columns: Ax = 0 has many solutions. A is a singular matrix. 

Eventually we will have n vectors in m-dimensional space. The matrix A with those n 
columns is now rectangular (m by n). Understanding Ax = h is the problem of Chapter 3. 

• REVIEW OF THE KEY IDEAS • 

1. Matrix times vector: Ax = combination of the columns of A. 

2. The solution to Ax = h is x = A-I h, when A is an invertible matrix. 

3. The difference matrix A is inverted by the sum matrix S = A-I. 

4. The cyclic matrix C has no inverse. Its three columns lie in the same plane. 
Those dependent co lumps add to the zero vector. ex = 0 has many solutions. 

5. This section is looking ahead to key ideas, not fully explained yet. 

• WORKED EXAMPLES • 

1.3 A Change the southwest entry a31 of A (row 3, column 1) to a31 = 1: 

[ -~ ~ ~] [ ~~ ] = [ -~~ + X2 ] = [~~] . 
1 -I 1 X3 Xl - X2 + x3 b3 

Ax = b 

Find the solution x for any h. From x = A-I h read off the inverse matrix A-I. 
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Solution Solve the (linear triangular) system Ax = b from top to bottom: 

first Xl = b I 

then X2 = b I + b2 This says that x = A-I b = 

then X3 = b2 + b3 

This is good practice to see the columns of the inverse matrix multiplying b I , b2, and b3. 
The first column of A-I is the solution for b = (1,0,0). The second column is the solution 
forb = (0,1,0). The third column x of A-I is the solution for Ax = b = (0,0,1). 

The three columns of A are still independent. They don't lie in a plane. The combi
nations of those three columns, using the right weights Xl, X2, X3, can produce any three
dimensional vector b = (bI. b2, b3). Those weights come from x = A-lb. 

1.3 B This E is an elimination matrix. E has a subtraction, E- l has an addition. 

Ex = b [_: ~] [ ~~ ] = [ ~~ ] E = [_: ~] 
The first equation is Xl = b l . The second equation is X2 - ,eXI = b2. The inverse will add 

,eXI = ,ebI , because the elimination matrix subtracted ,eXl : 

E- l _ [1 0] 
- .e 1 

1.3 C Change C from a cyclic difference to a centered difference producing X3 - Xl: 

C x = b [ - ~ ~ ~] [ ~~ ] = [~~ = ~l ] = [ ~~ ] . (15) 
o -1 0 X3 0 - X2 b3 

Show that ex = b can only be solved when b I + b3 = O. That is a plane of vectors b 
in three-dimensional space. Each column of C is in the plane, the matrix has no inverse. 
So this plane contains all combinations of those columns (which are all the vectors C x). 

Solution The first component of b = C x is X2, and the last component of b is -X2. 

SO we always have bI + b3 = 0, for every choice of x. 
If you draw the column vectors in C, the first and third columns fall on the same line. 

In fact (column 1) = -(column 3). So the three columns will lie in a plane, and C is not 

an invertible matrix. We cannot solve Cx = b unless b l + b3 = O. 
I included the zeros so you could see that this matrix produces "centered differences". 

Row i of Cx is Xi+l (right of center) minus X;-I (left of center). Here is the 4 by 4 
centered difference matrix: 

0 1 0 0 Xl X2 - 0 b I 

Cx =b 
-1 0 1 0 X2 X3 - Xl b2 

0 -1 0 I -
b3 X3 X4 -X2 

(16) 

0 0 -1 0 X4 o -X3 b4 

Surprisingly this matrix is now invertible! The first and last rows give X2 and X3. Then 
the middle rows give Xl and X4. It is possible to write down the inverse matrix C-1. But 
5 by 5 will be singular (not invertible) again ... 
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Problem Set 1.3 

1 Find the linear combination 2s 1 + 3s2 + 4s 3 = b. Then write b as a matrix-vector 
multiplication S x. Compute the dot products (row of S) . x: 

81 = [:] 82 = [n 83 = [n go into ilie columns of S. 

2 Solve these equations S y = b with s 1, S2, S3 in the columns of S: 

The sum of the first n odd numbers is __ 

3 Solve these three equations for Yl, Y2, Y3 in terms of B1, B2 , B3: 

Sy = B 

Write the solution y as a matrix A = S-l times the vector B. Are the columns of S 
independent or dependent? 

4 Find a combination XI W 1 + X2 W2 + X3 W 3 that gives the zero vector: 

Those vectors are (independent) (dependent). The three vectors lie in a . The 
matrix W with those columns is not invertible. 

5 The rows of that matrix,W produce three vectors (I write them as columns): 
\ 

Linear algebra says that these vectors must also lie in a plane. There must be many 
combinations with Ylrl + Y2r2 + Y3r3 = O. Find two sets of y's. 

6 Which values of c give dependent columns (combination equals zero)? 

o c] 
1 0 
1 1 [ 

c c c] 
215 
336 
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7 If the columns combine into Ax = 0 then each row has r . x = 0: 

=Ul 
The three rows also lie in a plane. Why is that plane perpendicular to x? 

8 Moving to a 4 by 4 difference equation Ax = h, find the four components XI, X2, 

X3, X4. Then write this solution as x = Sh to find the inverse matrix S = A-I: 

Ax = 

1 0 0 0 
-1 1 0 0 
o -1 1 0 
o 0 -1 1 

=h. 

9 What is the cyclic 4 by 4 difference matrix C? It will have I and -1 in each row. 
Find all solutions x = (Xl, X2, X3, X4) to ex = O. The four columns of C lie in a 
"three-dimensional hyperplane" inside four-dimensional space. 

10 Aforward difference matrix I::J. is upper triangular: 

[ -1 1 0] [ ZI ] [ Z2 - Zl ] [ b
l 

] I::J.z = 0 -1 1 Z2 = Z3 - Z2 = b2 = h. 
o 0 -1 Z3 0 - Z3 b3 

Find ZI, Z2, Z3 from b l , b2 , b3. What is the inverse matrix in z = I::J. -1 h? 

11 Show that the forward differences (t + 1)2 - t 2 are 2t+ 1 = odd numbers. 
As in calculus, the difference (t + l)n - t n will begin with the derivative of tn, 
which is __ 

12 The last lines of the Worked Example say that the 4 by 4 centered difference matrix 
in (16) is invertible. Solve ex = (b l , b2 , b3, b4 ) to find its inverse in x = c- l h. 

Challenge Problems 

13 The very last words say that the 5 by 5 centered difference matrix is not invertible. 
Write down the 5 equations ex = h. Find a combination of left sides that gives 
zero. What combination of b l , b2 , b3, b4 , bs must be zero? (The 5 columns lie on a 
"4-dimensional hyperplane" in 5-dimensional space.) 

14 If (a,b) is a multiple of (c,d) with abcd =I- 0, show that (a,c) is a multiple of 
(b, d). This is surprisingly important; two columns are falling on one line. You 
could use numbers first to see how a, b, c, d are related. The question will lead to: 

The matrix A = [~ ~] has dependent columns when it has dependent rows. 




